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Universal behavior of quantum walks with long-range steps
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Continuous-time quantum walks with long-range steps R~ (R being the distance between sites) on a discrete
line behave in similar ways for all y=2. This is in contrast to classical random walks, which for y>3 belong
to a different universality class than for y=3. We show that the average probabilities to be at the initial site
after time 7 as well as the mean square displacements are of the same functional form for quantum walks with
y=2, 4, and with nearest neighbor steps. We interpolate this result to arbitrary y=2.
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One-dimensional models are not only prime toys for the-
oretical physicists but also allow for deep physical insights.
For instance, in solid state physics lattice models describe
the behavior of metals quite accurately [1,2]. Over the years
these models have been refined and augmented to address
different phenomena, such as the dynamics of atoms in op-
tical lattices and the Anderson localization in systems with
energetic disorder [3]. Classical one-dimensional models al-
low to address various aspects of normal and anomalous dif-
fusion [4].

The simplest model describing a particle moving on a
regular structure assumes only jumps from one position j to
its nearest neighbors (NN) j = 1. The tight-binding approxi-
mation for such systems is equivalent to the so-called
continuous-time quantum walks (CTQW), which model
quantum dynamics of excitations on networks [5-7]. Related
discrete-time models are (coined) quantum random walks [8]
and, more abstract, quantum baker maps [9], both of which
have dynamical properties similar to CTQW. Recently, there
have been several experimental proposals addressing CTQW
in various types of systems, ranging from microwave cavities
[10], waveguide arrays [11], atoms in optical lattices [12,13],
or structured clouds of Rydberg atoms [14]. A large class of
these systems do not show NN steps. Consider, for instance,
a chain of clouds of Rydberg atoms where each cloud can
contain only one excitable atom due to the dipole blockade
[14,15]. The excited atoms of different clouds interact via
long-range couplings decaying as R~>, where R is the dis-
tance between different clouds.

The dynamics of classical excitations can be efficiently
described by continuous-time random walks (CTRW) [16].
There it was shown that CTRW in one dimension with step
lengths decaying as R belong only to the same universality
class if y>3. Those CTRW show normal diffusion, whereas
CTRW with y<<3 show anomalous diffusion as, e.g., Lévy
flights. The reason is that the for y<<3 the second moment of
the step-length distribution (R?) diverges [14,17].

In the following we will consider in one dimension the
dependence of the CTQW dynamics of excitations on the
range of the step length. We restrict ourselves to the exten-
sive cases, i.e., we explicitly exclude ultra-long-range inter-
actions, where the exponent vy of the decay of the step length
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is smaller than the dimension (y<d, y=d is the marginal
case); thus we take here y=2. The effect of ultra-long-range
interactions on the thermodynamics and dynamics of regular
one-dimensional lattices has been studied numerically before
[18].

Our analysis is based on the density of states (DOS) of the
corresponding Hamiltonian. The DOS contains the essential
information about the system and allows to calculate various
dynamical quantities, such as the probability to be at time ¢ at
the initially excited site.

The coherent dynamics of single excitations on a graph of
connected two-level systems (nodes) is modeled by CTQW,
which follows by identifying the Hamiltonian H of the sys-
tem with the CTRW transfer matrix T, i.e., H=-T; see, e.g.
[5,6] (we will set A=1 in the following). For NN step
lengths and identical transfer rates, T is related to the con-
nectivity matrix A of the graph by T=-A. In the following,
we will consider one-dimensional networks with periodic
boundary conditions (i.e., a discrete ring). Here, when the
interactions go as R™?, with R=|k—j| being the (on the ring
minimal) distance between two nodes j and k, the Hamil-
tonian has the following structure:

=

N max
H,=>

n=

R™(2|n)(n| = [n = RXn| = |n + R)(n
R=1

), (1)

—_

where R, is a cutoff for finite systems. Note that in the
infinite system limit we first take N— o before also taking
R« — . For the cases considered here, namely y=2 and N
of the order of a few hundred nodes, a reasonable cutoff is
R.x=N/2, which is also the largest distance between two
nodes on the discrete ring. In this way, to each pair of sites a
single (minimal) distance and a unique interaction is as-

signed.
The states |j) associated with excitations localized at the
nodes j (j=1,...,N) form a complete, orthonormal basis set

of the whole accessible Hilbert space, i.e., (k|j)=&; and
S| k)(k|=1. In general, the transition amplitudes from state
lj) to state |k) during ¢ and the corresponding probabilities
read ag)(t)5<k|exp(—iHyt)|j) and wij)(t)5|ag)(t) 2 re-
spectively. In the classical CTRW case the transition prob-
abilities obey a master equation and can be expressed as

(0 =(k|exp(T, )] ) [5.6]
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For all vy, the time independent Schrodinger equation
H, |®)=E (6)|®, is diagonalized by Bloch states |®g)
=N‘”22§\ilexp(i0j) |j). One obtains the eigenvalues

Rmax

E0)= X R2-2cos(6R)]. 2)
R=1

In the limit N— <o the 6 values are quasicontinuous. Then,
the DOS p,(E) is obtained by inverting Eq. (2) and taking
the derivative with respect to E,. In the NN case (y=) only
the first term in Eq. (2), R=1, contributes. From this we get
the known DOS p.(E)=(mV4E—-E?)~'. For y=2 we can
approximate the sum by letting R, — %, which yields
E,(0)=m0-6*/2 (see Eq. 1.443.3 of [19]). By inverting this
and assuming 6 to be continuous one obtains p,(E)
=(7T\s’§\«"772/ 2—FE)7!. In the intermediate range we have an
analytic solution for y=4, namely we have E,(6)=6'/24
-6/ 6+ 6°/6 (see Eq. 1.443.6 of [19]), which yields [20]
pu(E)=[2m(2/3)V4\E(7/N24) - E¥*]7L.

In order to interpolate between p,(E) and p.(E) to arbi-
trary values of ye[2, ] we assume the following general
form for the DOS:

pAE) ~ [Ne B~ EF]! 3)
with @ [0,1] and Be[1,2]; c, is a constant related to the
maximal energy, ¢, = (E, )" Thus, for y=2: a=0 and
B=1 (c,=72/2); for y=4: a=1 and B=3/2 (c,=72/\24);
for NN walks: a=1 and 8=2 (c,,=4). For small E, i.e., close
to the band edge #=0, Eq. (3) can be approximated by

o (E) ~ {E‘”Z a=1(y>3),

4
E? a<l2=y=3), @)

from which we observe the distinction between 7y values
larger and smaller than three. This is in line with previous
studies [21], in which the DOS goes as p(E)~ E*, where v
=-1/2 for y>3 and v=—(y-2)/(y-1) for 2= y<3. For
E=E_.. i.e., close to the band edge 6=, it is straightfor-
ward to show that p(E) ~ (E,.x—E)~"? for all y=2. Starting
from the two limiting cases y=2 and y=% and supported by
the y=4 case, Eq. (3) appears as a natural candidate for a
generalized DOS.

Figure 1 shows a comparison of the DOS obtained from
the numerical diagonalization of H, for N=10 000 with vy
=2, 3, 4, and o (solid black curves) with the exact expres-
sions for p,(E), p4(E), and p..(E), see above, as well as a fit
for p;(E). The values of «a and 3, extracted from fits to the
numerical DOS for various values of v, are given in the inset
of Fig. 1. Clearly, for y=4 we have a=1, while B ]1,2[.
For y=2, the values of « and 8 drop to =0 and B=1,
respectively.

CTRW with step widths distributed according to R be-
long to the same universality class for y> 3, the mean square
displacement (MSD) going as (R?)~1, i.e., showing normal
diffusion; see, e.g. [16]. For y=3 the second moment of the
distribution diverges, which leads to a MSD showing anoma-
lous diffusion.
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FIG. 1. (Color online) Density of states for a discrete ring with
N=10000 nodes with hopping parameters y=2, 3, 4, and o« (solid
black curves with symbols), obtained by numerically diagonalizing
H,. The dashed green curves show the analytic expressions for
po(E), ps(E), and p.(E) as well as the fit for p3(E) [Eq. (3)] given
in the text. The inset shows the exponents a and B obtained by
fitting the DOS for different values of y to Eq. (3).

Another way to see this is using the average probability to
be at the initial site at time ¢, p,(7). Classically one has a
simple expression for p,(r) [22,23],

1 1
py(0) = ;/21 P = ]—VEH exp[- E,(0)1], (5)
i

which depends only on the eigenvalues but not on the eigen-

vectors. In the quantum case, the corresponding expression is

(1) = (1/N)E§V:17T§.§)(l‘). For the discrete ring, we get

2
. (6)

1
(1) = |a,(1)]* = ]—VE exp[— iE,()1]
6

which also depends only on the eigenvalues. Note that for
more complex networks the right-hand side of Eq. (6) is only
a lower bound to 7,(t) [24]. In the continuum limit, Egs. (5)
and (6) can be written as

ﬁy(t)=de p(E)exp(- E1), (7

2

. (8)

(1) = ‘de pE)exp(-iEt)

Having the DOS at hand the integrals in Egs. (7) and (8)
can be calculated—at least asymptotically—for large 7. In the
classical case Eq. (7) will be dominated by small values of E
when ¢ becomes large; see Eq. (4). From the DOS we obtain

12 a=1
ﬁy(t) N 7w <. ©
Quantum mechanically, some care is in order. Here, the
assumption that 77..(f) will be dominated by small values of
E for large t is not applicable, due to the oscillating expo-
nential in Eq. (8). For the NN case we know that 7.(z)
~ !5 see, for instance [24]. Considering now the other lim-
iting case y=2, we have
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FIG. 2. (Color online) (a) Classical p(7) and (b) corresponding MSD; (c) quantum mechanical 77,(¢) and (d) corresponding MSD (right)

for a discrete ring with N=10 000 nodes with y=2, 3, 4, and c°.

/2
[
0

Note that for r> 1, Eq. (10) approaches 7,(t) =~ (2rt)~!. Thus
the dependence of 7r,(7) on 1 is the same as for 7.,.(). This
suggests that for all one-dimensional lattices with extensive
(y=2) interactions the long time dynamics of the excitations
is similar, no matter how long- or short-range the step
lengths are. This is in contrast to the classical case, where
only CTRW with y>3 belong to the same universality class.

To test this we calculated numerically for a discrete ring
of N=10000 nodes p,(r) and 77,(¢) for different y; the re-
sults are shown in Fig. 2. Clearly, p.(t) changes when in-
creasing the step width from NN steps (y=) to long-range
steps distributed as R~ (y=2); see Fig. 2(a). While p,(1) for
>3 decays as !2, the power law changes to ! for y=2.
In contrast, the decay of the maxima of the quantum return
probability 77.(¢) follows ¢~ for all y; see Fig. 2(c). Long-
range steps lead only to a damping of the oscillations and to
an earlier interference once the excitation has propagated
half around the ring.

The classical and quantum MSD corroborate these find-
ings; see Figs. 2(b) and 2(d). Now, the MSD for CTRW-
CTQW on the discrete ring with initial site j are given by

2

exp(— iEr) gy (10)

: N2 —E

N

1
RODatm = 3y 20 k= /PP 0 (11)
where P;C’;.)(t) = p (t) for CTRW and 73 (t) (7)(1‘) for
CTQW. Now, decreasmg v has huge effects on the classical

MSD. For 2=+vy<3 the MSD starts to diverge, which in
the case of finite networks is reflected in the fact that the
MSD is of the order of N already for very short times. In-
creasing vy to values larger than 3 leads to the expected dif-
fusive behavior (R%y(t)>d~ t for all y> 3. The quantum MSD,
on the other hand, do not diverge for all y values considered
here. All step lengths lead to the same qualitative behavior,
(R g~ 1*.

Figure 2 also shows that the MSD can be related to p,()
and 77.(t) through

(7, (0]
[7/0)]7

for y>3 in the classical and y=2 in the quantal case. This
generalizes previous (classical) results, obtained for regular
networks with NN-steps [22], to the quantum case and to
long-range steps.

We can now underline our results by analytically evaluat-
ing 7,(1) [Eq. (6)] using the stationary phase approximation
(SPA) [25]. We expect in general E(6) to be a smooth real-
valued function on the interval 6 [0,2#]. For large N, we
write @,(t) [Eq. (6)] in the integral form

(Rzy(t»c];qm -~ { (12)

1 2
a,(t) = ;Tfo d@expliE (6)t].

The SPA asserts now that the main contribution to this inte-
gral comes from those points where E,(6) is stationary
[dE(6)/do= E;(G):O]. If there is only one point 6, for
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FIG. 3. (Color online) Comparison of 77,(¢) obtained from exact diagonalization (solid black curves) and the SPA (dashed red curves) for

y=2, 3, 4, and .

which E!(6y)=0 and dZEy(a)/d02|,,OEE’;(00)¢0 one gets
(see [25])

a,(t) = ; exp(l{tE (60) + — sgn[E"(&O)]})

V2t EZ(6)|
(13)

such that

1
=|a (t)|2 ~ e~ .
’ 27| E3( )]

(14)
For the infinite one-dimensional regular network [see Eq.
(2), where N—oo and R,,,,— 0] and for y=2, E,(6) (see
above) has only one stationary point in 6 [0,27], namely
6y=m. Then Ey(m)=m"/2 and E5(w)=-1, leading to 7(7)
~ (2mt)~!, which does not show any oscillations and coin-
cides with the long time limit of Eq. (10).

For y>2, E (6) [see Eq. (2)] has two stationary points in
the interval 6 € [0,27], namely 6,=0 and 6y=. Then @,()
is approximately given by the sum of the contributions [each
being of the form given in Eq. (13)] of the two stationary
points. One easily verifies from E"(G) 25, cos(6R)/RY2
that sgn[£7(0)]=1 and sgn[E”(ﬂ')]——l Consequently, it fol-
lows that 77(¢) ~ 1 ! The results for the infinite system and
arbitrary y>2 are readily obtained: For 6,=0 we have
E0)=0 for all y and E;(O):2§(7—2), where {(y)
=37 R77 is the Riemann zeta function, Eq. 23.2.1 of [20].

For Gy=m we get E(m)=E,n, and E (m)=27(y-2)

=(2-2*"{(y-2), where 7(y)=Z;_ (- DR, Eq
23.2.19 of [20]. Hence
1 1
0= {lé’(v 2 " [ny-2)]
~ 2’COS[IE7(7T) + 77/2]} (15)
V[Ey=2)n(y=-2)|
For y=3, this yields ;(f)=[27In(2)¢]"!, which also

does not show any oscillations. Comparing Eq. (15) for
y=% to the long-time behavior of the exact solution
[24], we have . (f)=[2-2 cos(4t+/2)]/(27t)=sin*(2t
+/4)/(mt), which is exactly the asymptotic expansion of
(1) =|J(2t) > = sin®(2t+ 7w/4) / (7rt), where J,,(2t) is the
Bessel function of the first kind [20,24].

Figure 3 shows comparisons of 7.(f) obtained from the
exact diagonalization of H, (solid black curves) to the SPA
(dashed red curves). Clearly, the oscillations decrease with
decreasing y. For y=2 and large ¢, the oscillations of the
exact 7,(f) have practically vanished and ,(¢) =~ (27t)~'.
The SPA for y=3 still shows oscillations because E'(0)
<. Increasing 7y further leads to an even better agreement
of the SPA with the numerically evaluated decay.

In conclusion, we have analyzed the quantum dynamics
of excitations on discrete rings under long-range step
lengths, distributed according to R~”. For specific cases, we
calculated the DOS analytically and interpolated to arbitrary
step length ranges. The analytically obtained DOS enabled
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us to analytically calculate the average probability to be at
the initial site at ¢, which we related to the MSD at time ¢.
The classical MSD show that only CTRW with y>3 belong
to the same universality class, displaying normal diffusion.
In contrast, the quantal MSD increase as 1 for all extensive
cases, y=2. Analytic calculations of the probability to be at

PHYSICAL REVIEW E 77, 021117 (2008)

the initial node within the stationary phase approximations
confirm these findings.
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